

Une fiche de cours de Stéphane Pasquet - Mise à jour : 15 janvier 2021

(https://cours-particuliers-bordeaux.fr)

(https://mathweb.fr)

Généralités

Définition

Un vecteur est défini par :

- son sens
- sa direction
- sa norme

Il est représenté par une flèche.

- Sens de \overrightarrow{AB} : de la gauche vers la droite
- Direction de \overrightarrow{AB} : inclinaison de 30° avec l'horizontale
- Norme de \overrightarrow{AB} : $||\overrightarrow{AB}|| = 3$ cm (distance entre A et B)

A est l'origine du vecteur \overrightarrow{AB} , B est son extrémité.

Propriétés du parallélogramme

Règle du parallélogramme : si ABCD est un parallélogramme alors:

$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\overrightarrow{BC} = \overrightarrow{AD}$$

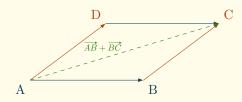
Relation de Chasles :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Somme de deux vecteurs

Pour ajouter plusieurs vecteurs, on met leurs représentants (les flèches) les uns à la suite des autres.

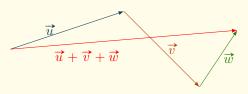
Le vecteur somme est représenté par la flèche dont l'origine est celle du premier vecteur et dont l'extrémité est celle du dernier vecteur.



Vecteurs colinéaires

 \vec{u} et \vec{v} sont colinéaires s'il existe un réel k tel que $\vec{u} = k\vec{v}$. Dans le schéma ci-contre, $\vec{u} = 2\vec{v}$: même sens, même direction et la norme de \vec{u} est le double de celle de \vec{v} .

Propriété : si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires alors A, B et C sont alignés.

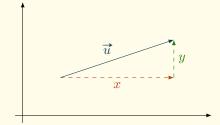


Dans un repère orthonormé

Coordonnées d'un vecteur

Les coordonnées d'un vecteur représente le déplacement en abscisse et en ordonnée pour aller de l'origine à l'extrémité.

Si $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ alors il y a un déplacement de x unités horizontalement et y unités verticalement.



Calcul des coordonnées : si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$

Propriété : si k est un nombre réel et $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ alors les coordonnées de $k \overrightarrow{u}$ sont $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

Propriété : si $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors les coordonnées de $\vec{u} + \vec{v}$ sont $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Norme d'un vecteur

si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors :

$$\|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Vecteurs colinéaires

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ colinéaires $\iff xy' = x'y$