Suites numériques, généralités

Première, enseignement de spécialité

mathweb.fr

14 juin 2025

Réponses

Vous trouverez ci-dessous les réponses correctes.

 $\boxed{1}$ Une suite (u_n) est définie par l'égalité :

$$u_n = n^2 + 4n - 1.$$

Est-elle définie par récurrence?

 \square Oui

✓ Non

2 Une suite (u_n) est définie par la relation :

$$u_0 = 7,$$
 $u_{n+1} = u_n^2 + u_n + 1.$

Est-elle définie par récurrence?

✓ Oui

 \square Non

3 Une suite (u_n) est définie par la relation :

$$v_0 = -1, \qquad v_n = v_{n-1} + 1.$$

Est-elle définie par récurrence?

✓ Oui

 \square Non

Dès lors qu'un terme se calcule à partir de son précédent, la relation est de récurrence. Ici, on calcule v_n à partir de son précédent v_{n-1} .

4 Dans la notation « u_n », n est :

 \square le terme

✓ le rang

 $\boxed{\mathbf{5}}$ Une suite $(u_n)_{n\geqslant 0}$ est définie par l'égalité :

$$u_n = n^2 + 4n - 1.$$

Son premier terme vaut:

 \checkmark -1

 \square 3

Son premier terme est $u_0 = 0^2 + 4 \times 0 - 1 = -1$.

6 Une suite $(v_n)_{n\geqslant 1}$ est définie par l'égalité :

$$v_n = \frac{n-1}{n+1}.$$

Son premier terme vaut:

 \Box -1

Son premier terme est v_1 d'après sa définition $(n \ge 1)$. Et $v_1 = \frac{1-1}{1+1} = 0$.

7 Une suite (u_n) est définie par la relation :

$$u_0 = 7, \qquad u_{n+1} = 3u_n - 7.$$

Que vaut son troisième terme?

 \checkmark 35

□ 98

Le troisième terme est u_2 car on commence par u_0 .

8 Une suite (v_n) est définie par la relation :

$$v_1 = 5, \qquad v_{n+1} = 5(v_n - 1).$$

Que vaut son troisième terme?

✓ 95

 \square 470

Ici, le troisième terme est v_3 car la suite commence par v_1 .

- 9 La suite (u_n) définie par $u_n = 3n 5$ est :
 - ✓ Croissante

□ Décroissante

Cette suite est définie par une fonction affine dont le coefficient directeur est égal à 3 (positif), donc croissante.

10	La suite (v.) définie par v_n	=7-4n est:
----	--------------	---------------------	------------

☐ Croissante

☑ Décroissante

Cette suite est définie par une fonction affine dont le coefficient directeur est égal à -4 (positif), donc décroissante.

11 On définit la suite (u_n) par :

$$u_n = \frac{n+1}{n+3}$$

. Quelle est l'expression de u_{n+1} ?

$$\Box \ \frac{2n+4}{n+3}$$

12 On définit la suite (v_n) par : $v_n = n^2 + n - 1$. Quelle est l'expression de v_{n+1} ?

$$\square$$
 $n^2 + n$

$$\sqrt{n^2+3n}$$

13 On définit la suite (u_n) par : $u_n = 2n^2 + 5n + 2$. La suite est :

✓ Croissante

□ Décroissante

$$u_{n+1} - u_n = 4n + 7 > 0 \text{ car } n \ge 0.$$

14 On définit la suite
$$(v_n)$$
 par : $u_n = \frac{4-n}{n+2}$. La suite est :

☐ Croissante

☑ Décroissante

$$v_{n+1} - v_n = \frac{-6}{n^2 + 5n + 6} < 0 \text{ car } n \ge 0 \text{ donc } 5n + 6 > 0 \text{ et donc } n^2 + 5n + 6 > 0.$$

15 La suite (u_n) définie par :

$$u_0 = 5, \qquad u_{n+1} = -u_n$$

 \Box est monotone

✓ n'est pas monotone

 $u_0 = 5$, $u_1 = -5$, $u_2 = -(-5) = 5$, $u_3 = -5$,... Les termes de la suite vallent donc alternativement 5 et -5. La suite n'est don pas monotone (ni croissante, ni décroissante).

16 La suite (v_n) définie par :

$$v_0 = 6, \qquad v_{n+1} = v_n^2 + 7v_n + 9.$$

La suite est:

✓ Croissante

 $\hfill\Box$ Décroissante

$$v_{n+1} - v_n = v_n^2 + 6v_n + 9 = (v_n + 3)^2 > 0.$$

17 La suite (w_n) définie par :

$$w_0 = 6, w_{n+1} = 3w_n - w_n^2 - 1.$$

La suite est :

 \square Croissante

 \checkmark Décroissante

$$w_{n+1} - w_n = -w_n^2 + 2w_n - 1 = -(w_n - 1)^2 \le 0.$$