Racines carrées

Seconde générale

12 octobre 2023

Réponses

Vous trouverez ci-dessous les réponses correctes.

 $\boxed{1} \sqrt{12} = \sqrt{6} \times \sqrt{2}.$

✓ Vrai

□ Faux

 $\boxed{2} \sqrt{12} = 2\sqrt{3}.$

✓ Vrai

□ Faux

 $\sqrt{12} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}.$

 $\boxed{3} \left(\sqrt{5}\right)^2 = 5.$

✓ Vrai

□ Faux

 $\boxed{4} \left(\sqrt{(-3)^2} \right)^2 = -3.$

 $\hfill\Box$ Vrai

✓ Faux

 $\boxed{\mathbf{5}} \text{ Pour tout nombre r\'eel } x, \, \left(\sqrt{\mid x\mid}\right)^2 = x.$

 \checkmark Vrai

 \square Faux

 $\boxed{6} \sqrt{9 \times 81} = \cdots$

□ 18

 \square 72

✓ 27

□ 81

7 Si x < 0 alors $\sqrt{x^2} = x$.

 $\hfill\Box$ Vrai

✓ Faux

Si x < 0 alors $\sqrt{x^2} = -x$. Une racine carrée ne peut pas être négative donc ne peut pas être égal à x pour x < 0.

- 8 La forme simplifiée de $\sqrt{75}$ est :
 - $\Box 2\sqrt{5}$

 $\checkmark 5\sqrt{3}$

 \Box $5\sqrt{5}$

 $\Box 3\sqrt{5}$

$$\sqrt{75} = \sqrt{25 \times 3} = \sqrt{5^2} \times \sqrt{3} = 5\sqrt{3}.$$

- 9 La forme simplifiée de $\sqrt{\frac{63}{16}}$ est :
 - $\Box \frac{4}{3}\sqrt{7}$

 $\Box \ \frac{9\sqrt{7}}{4}$

 $\sqrt{3}\sqrt{7}$

 $\Box \frac{7\sqrt{3}}{2}$

$$\sqrt{\frac{63}{16}} = \frac{\sqrt{3^2 \times 7}}{\sqrt{4^2}} = \frac{3\sqrt{7}}{4} = \frac{3}{4}\sqrt{7}.$$

- $\boxed{10} \ \frac{\sqrt{504}}{\sqrt{63}} = 4\sqrt{2}.$
 - □ Vrai

√ Faux

- $\frac{\sqrt{504}}{\sqrt{63}} = 2\sqrt{2}.$
- $\boxed{11} \sqrt{17+3} = \sqrt{17} + \sqrt{3}.$
 - \square Vrai

√ Faux

$$\sqrt{17+3} = \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}.$$

- $\boxed{12} \ \frac{6}{\sqrt{3}} = \cdots$
 - \checkmark $2\sqrt{3}$

 \Box 6

 $\Box 3\sqrt{2}$

- $\Box 6\sqrt{3}$
- 13 Un triangle ABC rectangle en A est tel que $AB = \sqrt{3}$ et $AC = \sqrt{5}$. Alors BC < 3 + 5.
 - ✓ Vrai

□ Faux

D'après le théorème de Pythagore, $BC=\sqrt{AB^2+AC^2}=\sqrt{3+5}<\sqrt{3}+\sqrt{5}$ d'après l'inégalité triangulaire.