Trigonométrie

Première, enseignement de spécialité

mathweb.fr

15 juin 2025

Réponses

Vous trouverez ci-dessous les réponses correctes.

- 1 Quelle est la valeur de $\sin\left(\frac{\pi}{6}\right)$?

- 2 Quelle est la valeur de $\cos\left(\frac{\pi}{3}\right)$?

 - $\Box \frac{\sqrt{2}}{2}$ $\Box \frac{\sqrt{3}}{2}$

- 3 Quelle est la valeur de $\sin\left(\frac{\pi}{2}\right)$?
 - $\Box \frac{\sqrt{2}}{2}$

 $\Box \frac{\sqrt{3}}{2}$ \Box 0

 $\sqrt{1}$

- 4 Quelle est la valeur de $\cos\left(\frac{\pi}{4}\right)$?
 - $\Box \frac{1}{2}$

 $\Box \ \frac{\sqrt{3}}{2}$

 $\sqrt{\frac{\sqrt{2}}{2}}$

- \Box 1
- $\boxed{\textbf{5}} \text{ Quelle est la valeur de } \sin\left(\frac{5\pi}{6}\right)?$
 - \Box $-\frac{1}{2}$

 $\Box \ -\frac{\sqrt{3}}{2}$ $\checkmark \ \frac{1}{2}$

- 6 Quelle est la valeur de $\cos\left(\frac{2\pi}{3}\right)$?
 - $\sqrt{} \frac{1}{2}$
 - $\Box \frac{1}{2}$

- $\Box \frac{\sqrt{3}}{2}$
- $\Box -\frac{\sqrt{3}}{2}$
- $\boxed{\textbf{7}} \text{ Si } \sin(x) = \frac{3}{5}, \text{ avec } 0 \leqslant x \leqslant \frac{\pi}{2}, \text{ quelle est la valeur de } \cos(x) \, ?$

- $\Box \frac{3}{5}$ $\Box -\frac{3}{5}$
- 8 Quelle est la valeur de $\sin\left(-\frac{\pi}{6}\right)$?
 - $\sqrt{} \frac{1}{2}$

 $\Box -\frac{\sqrt{3}}{2}$

 $\Box \frac{1}{2}$

- $\Box \frac{\sqrt{3}}{2}$
- 9 Quelle est la valeur de $\cos\left(-\frac{\pi}{3}\right)$?

- $\Box -\frac{1}{2}$ $\Box -\frac{\sqrt{3}}{2}$
- 10 Si $\cos(x) = \frac{1}{2}$, avec $-\frac{\pi}{2} \leqslant x \leqslant 0$, quelle est la valeur de $\sin(x)$?
 - $\Box \frac{\sqrt{3}}{2}$

 $\Box -\frac{1}{2}$

 $\sqrt{3}$

- $\Box \frac{1}{2}$
- 11 Résolvez l'équation $2\cos(x) + 1 = 0$ pour $x \in [0, 2\pi]$.

- $\Box \frac{\pi}{2}, \frac{3\pi}{2}$ $\Box \frac{\pi}{6}, \frac{11\pi}{6}$
- 12 Résolvez l'équation $\cos(x) \frac{\sqrt{2}}{2} = 0$ pour $x \in]-\pi,\pi]$.
 - $\boxed{4}, -\frac{\pi}{4}$
 - $\Box \ \frac{\pi}{4}, \frac{7\pi}{4}$

- $\Box \quad -\frac{\pi}{4}, \frac{7\pi}{4}$ $\Box \quad \frac{\pi}{4}, -\frac{7\pi}{4}$

- 13 Résolvez l'équation $2\cos(x) \sqrt{3} = 0$ pour $x \in]-\pi,\pi]$.
 - $\sqrt{\frac{\pi}{6}}, -\frac{\pi}{6}$
 - $\Box \ \frac{\pi}{6}, \frac{11\pi}{6}$

- $\Box \quad -\frac{\pi}{6}, \frac{11\pi}{6}$ $\Box \quad \frac{\pi}{6}, -\frac{11\pi}{6}$
- 14 Résolvez l'équation $\cos(x) + \frac{1}{2} = 0$ pour $x \in [0, 2\pi]$.

- $\Box \frac{\pi}{2}, \frac{3\pi}{2}$ $\Box \frac{\pi}{6}, \frac{11\pi}{6}$
- 15 Résolvez l'équation $\cos(x) + \frac{\sqrt{3}}{2} = 0$ pour $x \in]-\pi,\pi]$.
 - $\boxed{6}, -\frac{5\pi}{6}$
 - $\Box \frac{5\pi}{6}, \frac{7\pi}{6}$

- $\Box \frac{5\pi}{6}, -\frac{7\pi}{6}$ $\Box -\frac{5\pi}{6}, -\frac{7\pi}{6}$
- 16 Résolvez l'équation $2\cos(x) 1 = 0$ pour $x \in [0, 2\pi]$.

- $\Box \frac{\pi}{6}, \frac{11\pi}{6}$ $\Box \frac{\pi}{2}, \frac{3\pi}{2}$