Variables aléatoires

Première, enseignement de spécialité

mathweb.fr

16 juin 2025

Réponses

Vous trouverez ci-dessous les réponses correctes.

1 Un dé cubique est lancé 2 fois. On note X la variable aléatoire représentant la somme des faces obtenues à l'issue de ces deux lancers. Alors, le nombre d'éléments de X est égal à :

 \Box 6

✓ 11

 \Box 12 \square 36

En effet, $X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$

2 On dispose d'un dé cubique, dont les faces sont numérotées de 1 à 6, et d'un dé tétraédrique (dont les faces sont numérotées de 1 à 4). Ces dés sont parfaitement équilibrés. On lance ces deux dés et on s'intéresse à la somme des deux chiffres obtenus. Soit X la variable aléatoire représentant l'ensemble des sommes possibles. Alors, l'expérance de X est égale à :

 \Box 4

 \checkmark 6

 \Box 5

 \Box 7

On a:

X	2	3	4	5	6	7	8	9	10
P(X)	1_	1_	1_	1_	1_	1_	1_	1_	1_
	24	12	8	6	6	6	8	12	24

et donc:

$$\mathbb{E}(X) = 2 \times \frac{1}{24} + 3 \times \frac{1}{12} + \dots + 10 \times \frac{1}{24}$$

 $\mathbb{E}\left(\mathbf{X}\right) = 6$

3 On jette trois fois de suite une pièce de monnaie. Si on obtient trois fois « pile » ou trois fois « face », on gagne $100 \in$. Sinon, on perd $10 \in$ (ce qui correspond à un gain de $-10 \in$). L'espérance de la variable aléatoire représentant le gain algébrique de ce jeu est égale à :

 \Box 16,5

 \Box 18,5

✓ 17,5

 \Box 19,5

4	On jette trois fois de suite une pièce de monnaie. Si on obtient trois fois « pile » ou trois fois
	« face », on gagne $100 \in$. Sinon, on perd $10 \in$ (ce qui correspond à un gain de $-10 \in$). On ajoute
	ensuite $5 \in$.

L'espérance de la variable aléatoire représentant le gain algébrique de ce jeu est égale à :

✓ 22,5

 \square 20

 $\Box 20,5$

□ 19,5

Il suffit d'ajouter 5 à l'espérance trouvée à la question pécédente d'après la formule $\mathbb{E}(X+5) = \mathbb{E}(X) + 5$ (linéarité de l'espérance).

- Une variable aléatoire X est telle que son espérance est $\mathbb{E}(X) = 10$. On pose alors Y = 2X + 5. Alors, $\mathbb{E}(Y) = \dots$:
 - □ 10

✓ 25

 \square 20

□ 30

$$\mathbb{E}\left(2X+5\right) = 2\mathbb{E}\left(X\right) + 5 = 25.$$

- 6 Une variable aléatoire X est telle que sa variance $\mathbb{V}(X) = 10$. On pose alors Y = 2X + 5. Alors, $\mathbb{V}(Y) = \dots$:
 - \square 25

✓ 40

 \square 20

 \square 45

$$\mathbb{V}\left(2\mathbf{X}{+}5\right)=2^{2}\mathbb{V}\left(\mathbf{X}\right)=4\times10=40.$$

- 7 Une variable aléatoire X est telle que son écart-type est $\sigma(X)=10.$ On pose alors Y=2X+5. Alors, $\sigma(Y)=\ldots$:
 - \square 25

 \Box 40

 \checkmark 20

 \square 45

$$\sigma 2X + 5 = 2\sigma X = 2 \times 10 = 20.$$

- 8 Une variable aléatoire X est telle que son espérance vaut $\exp X = 5$ et telle que $\mathbb{E}(X^2) = 40$. Alors, la variance de X est égale à :
 - \checkmark 15

 \Box 40

 \square 20

 \square 45

D'après la formule de Koenig-Huygens, $\mathbb{V}\left(\mathbf{X}\right)=\mathbb{E}\left(X^{2}\right)-\left(\mathbb{E}\left(\mathbf{X}\right)\right)^{2}=40-5^{2}=40-25=15.$