évolution population mondiale

Évolution de la population mondiale

Penchons-nous dans cet article sur l’évolution de la population mondiale et écoutons ce que Vérino dit sur cette évolution:

Évolution de la population mondiale: résumé en un tableau

AnnéesPopulation mondiale (en milliards)
18001
19272
19754
20228

Bien que les nombre de la deuxième colonne forment une suite géométrique de raison 2, on ne peut pas parler en ces termes car la différence entre chaque année n’est pas constante.

On peut toutefois entrevoir une évolution exponentielle à l’aide du graphique suivant:

Évolution population mondiale
Représentation des données de la population mondiale à partir de l’année 1800

Évolution de la population mondiale: interpolations

À ce stade, mathématiquement parlé, nous avons plusieurs possibilités d’interpolations: polynomiale ou exponentielle (on exclut direct l’interpolation affine vue la tronche de l’évolution…).

Évolution de la population mondiale: interpolation polynomiale

On pourrait penser que les quatre point du graphique précédent se trouvent (presque) sur une parabole… ou sur une courbe représentant un polynôme. Le but est donc de trouver une équation d’une fonction polynomiale passant par ces quatre points.

Interpolation quadratique

Dans un premier temps, on se penche sur une équation de degré 2… car franchement, les quatre points semblent former une belle parabole non ?

On cherche donc une fonction \(f\) telle que \(f(x)=ax^2+bx+1\) (“1” car la courbe passe par (0;1)).

Il nous faut donc exploiter deux des trois points restants.

  • En utilisant les points (127;2) et (175;4), on doit résoudre le système:$$\begin{cases}127^2a+127b+1=2\\175^2a+175b+1=4\end{cases}$$et on trouve alors:$$a=\frac{103}{533400},\quad b=-\frac{8881}{533400}.$$On obtient alors la courbe suivante:
Évolution population mondiale
  • En utilisant les points (127;2) et (222;8), on doit résoudre le système:$$\begin{cases}127^2a+127b+1=2,222^2a+222b+1=8\end{cases}$$et on trouve alors:$$a=\frac{667}{2678430},\quad b=-\frac{63619}{2678430}.$$On obtient alors la courbe suivante:
Évolution population mondiale
  • En utilisant les points (175;4) et (222;8), on obtient:
Évolution population mondiale

Nous allons donc rejeter l’interpolation quadratique car… trop approximative et surtout… trop fausse! En effet, entre 1800 et 1927, il n’y a pas de baisse de la population mondiale donc ce genre d’approximation n’est pas cohérent.

Interpolation cubique: interpolation de Lagrange

On cherche un polynôme passant par TOUS les points. On va donc utiliser le polynôme d’interpolation de Lagrange: on cherche le polynôme P tel que

Le polynôme obtenu est alors:$$P(x)=\frac{20971 x^3}{17624069400}-\frac{976673 x^2}{5874689800}+\frac{86321677 x}{8812034700}+1.$$

Évolution population mondiale

Bien que passant par tous les points, cette interpolation n’est pas adaptée au contexte. En effet, pourquoi l’évolution suivrait-elle une progression polynomiale cubique ?

Interciences sans conscience n’est que ruine de l’âme.

Rabelais

Interpolation exponentielle

Nous le savons (sûrement), dès lors que nous parlons d’évolution naturelle, il est souvent question d’évolution exponentielle. Il est donc plus naturel de se pencher sur une extrapolation exponentielle.

Pour cela, nous allons prendre le logarithme népérien de la population:

AnnéesLogarithme népérien de la population mondiale (en milliards)
1800ln(1) = 0
1927ln(2)
1975ln(4)
2022ln(8)

Et nous obtenons le graphique suivant:

Évolution population mondiale

Maintenant, nous allons faire une approximation affixe (un ajustement linéaire). On peut par exemple utiliser Python:

from numpy import polyfit, corrcoef # pour le calcul des coefficients de la droite de régression
from math import log

x = [ 0, 127, 175, 222 ] 
y = [ 0, log(2), log(4), log(8) ] # consommations (L)

coef = polyfit( x , y , 1 )
a, b = round(coef[0],3) , round(coef[1],3)
r = round(corrcoef(x,y)[0][1],3)

print(f'a = {a}, b = {b}, r = {r}.')
a = 0.009, b = -0.144, r = 0.965.

On peut ainsi dire que la droite d’équation \(y’ = 0,009x – 0,144\) est une approximation du logarithme népérien de la population mondiale.

Évolution population mondiale

Le coefficient de corrélation r n’est certes pas loin de 1, mais il aurait été mieux qu’il soit supérieur à 0,975 pour une corrélation mieux adaptée… Mais on va faire avec!

y‘ représente ln(y) donc:$$y = \text{e}^{0,009x – 0,144}.$$

Évolution population mondiale

Bien qu’au premier abord la courbe obtenue paraisse “loin” des points, c’est tout de même la meilleure approximation possible.

Avec cette approximation, en 2080, la population mondiale serait égale (en milliards) à:$$\text{e}^{0,009\times280 – 0,144}\approx=10,76.$$

Ainsi, je ne comprends pas comment les spécialistes ont prévu une population mondiale à 10,4 milliards en 2080… même si on n’est pas à 3 millions près à cette échelle…

La chaîne Youtube de Vérino: https://www.youtube.com/@Verinaze

Laisser un commentaire