Category ArchiveMathématiques

Etude d’une suite définie par \(u_{n+1} = f(u_n)\)

C’est un classique dans l’étude des suites : on considère une fonction f et on définit une suite par son premier terme \(u_0\) et par la relation \(u_{n+1}=f(u_n)\) pour tout entier naturel n.

Voyons cela avec l’exemple où \(f(x)=\frac{ax+b}{x^2-3x+2}\)…

Introduction aux matrices de rotation

Considérons la configuration suivante :

Dans le repère orthonormé d’origine O, A(x;y) est un point quelconque et A'(x’;y’) est son image par la rotation de centre O et d’angle \(\theta\). On cherche à exprimer x’ et y’ en fonction de x, y et \(\theta\)…

Un nombre suprenant

Une vidéo de la chaîne Numberphile me fascine :

Décomposition en produit de facteurs premiers sous \(\LaTeX\) avec Python

Cette tâche semble simple, mais pas tant que ça en définitive… Je voulais en effet créer une commande \(\LaTeX\) acceptant un paramètre (un nombre entier) qui décompose ce dernier en produit de facteurs premiers, et ce à l’aide de Python.

Il est donc naturel de penser à Pythontex. ça, c’est bon… Le problème est que quand on utilise Pythontex, on ne peut pas facilement passer un argument. Je m’explique… avec un code FAUX :

\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage[T1]{fontenc}
\usepackage{pas-math}
\usepackage{pythontex}

\newcommand{\decomp}[1]{
\py{decompose(#1)}
}
\begin{document}
\decomp{120}
\end{document}

Ce script suppose connue la fonction Python decompose (préalablement définie). Le problème ici est que l’argument #1 ne passe pas… Ce code ne donne donc rien d’autre qu’une erreur.

Il faut donc utiliser une astuce… que voici:

\newcommand{\ifactors}[1]{
\begingroup\edef\x{\endgroup
    \noexpand\py{decompose(#1)}}\x}

Ensuite, j’ai voulu enrichir la macro \ifactors de sorte à ce qu’elle puisse afficher en ligne ou en colonne la décomposition comme ceci :

Cette idée m’est venue suite à un échange avec un abonné qui avait des difficultés à faire appel à Xcas pour cette même décomposition (outil inclus dans mon package pas-cours.sty). Il est vrai que faire tourner Xcas dans un document\(\LaTeX\) n’est pas chose simple et mon package pas-cours fait appel à Xcas pour ce genre de calculs. Il fallait donc que je trouve un moyen de contourner ceci.

Pour les abonné.e.s de mathweb.fr, vous trouverez le script \(\LaTeX\) qui inclus bien sûr le script Python de la décomposition. Il y a aussi en en-tête la chaîne de compilation à respecter pour faire tourner Pythontex. Ça se passe sur cette page.

Bac 2019 : un exercice inédit pour la filière S

Voici un exercice inédit, tout droit sorti de mon imagination machiavélique. Il est ici question de probabilités continues (avec la loi exponentielle), d’étude de fonction (oui oui !), de loi normale et d’intervalle de fluctuation… Tout ça en un seul exercice ! Avec son corrigé… bien sûr !

Amusez-vous bien !

Lemniscate et parabole

Le but est de créer le GIF suivant:

Code Python

tikz = open("tikz.tex", "w")
text = ''
      
x = -5
while x < 5:
    y = 1/x
    r = (x**2+y**2)**0.5
    if r<10 and abs(y)<10:
        text = text + '\\begin{tikzpicture}[>=latex]\\labase'
        k = -5
        while k <= x:
            p = 1/k
            rr = (k**2+p**2)**0.5
            if rr<10 and abs(p)<10:
                text = text+'\\draw[red] ('+str(k)+','+str(p)+') circle ('+str(rr)+' cm);\n'
            k += 0.1
        text = text + '\\end{tikzpicture}\n'
    x += 0.1

tikz.write(text)
tikz.close()

Ce script génère un fichier tikz.tex dans lequel les dessins sont faits.

Le fichier \(LaTeX\)

\documentclass{article}
\usepackage{tikz}
\usepackage[paperwidth=10cm,paperheight=10cm,margin=0cm]{geometry}
\setlength{\parindent}{0pt}
\newcommand{\labase}{%
\clip (-5,-5) rectangle (5,5);
\draw[->] (-5,0) -- (5,0);
\draw[->] (0,-5) -- (0,5);
\draw plot[domain=-5:-0.1,samples=100] (\x,{1/\x});
\draw plot[domain=0.1:5,samples=100] (\x,{1/\x});
\node[below left] at (0,0) {$O$};
}
\begin{document}
\include{tikz}
\end{document}

En compilant via PdfLaTeX (par exemple), on génère un PDF de 49 pages.

Construction du GIF

J’ai pour habitude d’utiliser GIMP en ouvrant le PDF, puis en inversant l’ordre des calques, puis en sauvegardant en tant qu’animation dans un fichier .gif. Et voilà !

Avec Pythontex

On peut bien entendu créer un tel GIF directement avec pythontex:

% en utilisant Pythontex
\documentclass{article}
\usepackage{tikz}
\usepackage{pythontex}
\usepackage[paperwidth=10cm,paperheight=10cm,margin=0cm]{geometry}
\setlength{\parindent}{0pt}
\newcommand{\labase}{%
\clip (-5,-5) rectangle (5,5);
\draw[->] (-5,0) -- (5,0);
\draw[->] (0,-5) -- (0,5);
\draw plot[domain=-5:-0.1,samples=100] (\x,{1/\x});
\draw plot[domain=0.1:5,samples=100] (\x,{1/\x});
\node[below left] at (0,0) {$O$};
}
\begin{document}
\begin{pycode}
x = -5
while x < 5:
    y = 1/x
    r = (x**2+y**2)**0.5
    if r<10 and abs(y)<10:
        print('\\begin{tikzpicture}[>=latex]\\labase')
        k = -5
        while k <= x:
            p = 1/k
            rr = (k**2+p**2)**0.5
            if rr<10 and abs(p)<10:
                print('\\draw[red] ('+str(k)+','+str(p)+') circle ('+str(rr)+' cm);')
            k += 0.1
        print('\\end{tikzpicture}')
    x += 0.1
\end{pycode}
\end{document}

Baccalauréat mai 2019 série ES Amérique du Nord

Le sujet a été pris sur le site de l’APMEP. J’ai fait un corrigé rapide de l’enseignement obligatoire.

Bien entendu, si vous constatez une anomalie dans ce corrigé, n’hésitez pas à le mentionner en commentaire afin que je la rectifie dans les plus brefs délais.

Bac S 2019 Amérique du Nord, série S : un corrigé

Le sujet se trouve sur le site de l’APMEP ici :

https://www.apmep.fr/IMG/pdf/S_Amerique_Nord_28_05_2019-3.pdf

Je vous propose un corrigé rapide (qui peut aider les élèves) :

Une question impossible à faire correctement…

Dans ce sujet, il y avait une question qu’il était impossible de traiter correctement : dans l’exercice 3, la dernière question (à savoir de trouver le premier entier n tel que \(u_n\leq 10^{-15}\), a dû poser problèmes aux candidats… En effet, dès lors que l’on parle de 15 chiffres après la virgules, il faut se méfier des résultats donnés par les calculatrices car il est rare qu’elles fassent de bons calculs sur des nombres aussi proches de 0.

Pour trouver les valeurs les plus exactes possibles des premiers termes de la suite, je vais m’aider du développement limité de ln(1+x) pour x proche de 0 (puisque c’est ainsi dans le sujet):$$\ln(1+x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n+1}x}{n!}$$Ainsi, comme \(u_{n+1}=u_n-\ln(1+u_n)\), je vais écrire:$$u_{n+1}=\sum_{k=2}^{+\infty}\frac{(-1)^ku_n^k}{k!}$$

Un programme en Python

Je ne vais pas utiliser le module math (car en définitive, il donne des résultats aussi faux que les calculatrices) mais je vais créer moi-même ma fonction “suivant”: je ne vais pas aller jusqu’à l’infini (bien sûr) pour calculer la somme du développement limité, mais je vais aller jusqu’à 100000.

def suivant(x):
    s = 0
    for i in range(100000):
        if i%2 ==0:
            s = s + x**i/i
        else:
            s = s - x**i/i
    return s
        
u,n = 1,0
while n<7:
    n = n+1
    u = suivant(u)
    print(n,':',u)

Ce programme m’affiche alors les 7 termes qui suivent le premier:

1 : 0.30684781941506745
2 : 0.03922982658261975
3 : 0.0007499391358166527
4 : 2.8106384197651534e-07
5 : 3.9498434232245516e-14
6 : 7.800631533994917e-28
7 : 3.042492616457795e-55

En utilisant le module math, on obtient:

from math import log
       
u,n = 1,0
while n<7:
    n = n+1
    u = u-log(u+1)
    print(n,':',u)
1 : 0.3068528194400547
2 : 0.03923100059562018
3 : 0.0007499834542035178
4 : 2.8109705414345546e-07
5 : 3.9573363731490506e-14
6 : 4.9424054835715754e-17
7 : 4.9424054835715754e-17

Vous remarquerez alors que \(u_6\) ne prend pas la même valeur que précédemment…

Et sur les calculatrices, c’est encore pire car les tableurs affichent des nombres en “E-14”:

Tableur généré sur une CASIO

Aie ! Là, ça coince grave ! Les candidat.e.s n’avaient donc pas de chance de trouver la bonne réponse…

Triangle de Pascal construit avec Python et \(\LaTeX\)

Le code Python

def trianglePascal(n):
    T = [[0] * (n+1) for p in range(n+1)]
    for n in range(n+1):
        if n == 0:
            T[n][0] = 1
        else:
            for k in range(n+1):
                if k == 0:
                    T[n][0] = 1
                else:
                    T[n][k] = T[n-1][k-1] + T[n-1][k]
    return T

T = trianglePascal(9)

Ce premier code est intéressant pour voir comment construire une matrice (dont les coefficients sont ceux du triangle de Pascal).

On commence par initialiser notre matrice T en la remplissant de “0”. Puis on la remplit selon la propriété bien connue : \(\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}\).

Le code \(\LaTeX\)

On va utiliser PythonTeX :

% sous windows 
% pdflatex --shell-escape -synctex=1 -interaction=nonstopmode %.tex|python C:\Users\trash\AppData\Local\Programs\MiKTeX\scripts\pythontex\pythontex.py %.tex|pdflatex --shell-escape -synctex=1 -interaction=nonstopmode %.tex
% Sous Linux, remplacer "--shell-espace" par "-write18"

\documentclass[10pt,a0paper,landscape]{article}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{diagbox}
\usepackage{pythontex}
\usepackage{nopageno}
\usepackage{colortbl}
\usepackage{tikz}
\usepackage[margin=5mm]{geometry}
\setlength{\parindent}{0pt}
\newcommand{\dashed}{\tikz[baseline=1mm]\draw[gray!50,dashed](0,0)--(0,0.5);}
\begin{document}

\begin{pycode}
n = 50

def trianglePascal(n):
    T = [[0] * (n+1) for p in range(n+1)]
    for n in range(n+1):
        if n == 0:
            T[n][0] = 1
        else:
            for k in range(n+1):
                if k == 0:
                    T[n][0] = 1
                else:
                    T[n][k] = T[n-1][k-1] + T[n-1][k]
    return T


T = trianglePascal(n)

print('\\begin{tabular}{|>{\\columncolor{orange!10}}c|*{',n,'}{c!{\\dashed}}c|}\\rowcolor{orange!10}\\hline\\diagbox[height=8mm]{$n$}{$k$}')
for k in range(n+1):
    print('&',k)
    
for j in range(n+1):
	print('\\\\\\hline ',j)
	for k in range(n+1):
		if k == 0:
			print('&1')
		else:
			if T[j][k] != 0:
				print('&',T[j][k])
			else:
				print('&')

print('\\\\\\hline\\end{tabular}')
\end{pycode} 

\end{document}

Une précision ici : j’ai souhaité séparer chaque colonne par des pointillés. Pour cela, j’ai utilisé une macro TiKZ (pour si peu, ça fait un peu mal quand-même…) car le package arydshln (qui permet de le faire simplement) rentre en conflit avec diagbox… Il fallait donc en sacrifier un! (en fait, ils ne rentrent pas vraiment en conflit mais si on utilise des pointillés dans le tableau, une boîte noire apparaît à la place de l’étiquette “n”). On obtient le document suivant :

Pour les curieux, voici un aperçu des premières lignes et colonnes:

Aperçu du document affichant le triangle de Pascal pour n = 50

Construire le graphe d’une suite avec Python

Dans cet article, nous allons nous intéresser à la construction du graphe d’une suite définie par \(u_{n+1}=f(u_n)\).

Mon objectif est de créer un programme Python qui demande à la personne utilisatrice :

  • la fonction;
  • le premier terme de la suite;
  • le nombre de termes à construire;
  • la fenêtre \( (x_{\min}) \), \( (x_{\max}) \), \( (y_{\min}) \) et \( (y_{\max}) \);
  • le nom sous lequel la figure sera sauvegardée (vide si on ne souhaite pas la sauvegarder).

Les modules

import numpy as np
import matplotlib.pyplot as plt
from sympy import *
x=Symbol('x')
  • Nous aurons besoin du module numpy pour effectuer quelques calculs;
  • ensuite, matplotlib nous servira à effectuer les tracés;
  • le module sympy nous servira à interpréter la saisie de la fonction comme une fonction. À ce titre, on indique que le symbole de la variable est ‘x’.

Saisie de la fonction

def definite_function():
    fonction = input("Entrez l'expression de la fonction : ")
    # convertit la chaîne de caractères en 'fonction'
    f = lambdify(x,fonction,'math') # on utilise le module 'math' ici plutôt que 'numpy' car plus pratique
    fonction_latex = input('Syntaxe LaTeX : ')
    return f,fonction_latex

Ici, on demande de saisir d’une part la fonction (avec une syntaxe “classique”), chaîne de caractères que l’on s’empresse tout de suite de transformer en fonction avec la fonction lambdify du module simpy. Puis, on demande la syntaxe \(\LaTeX\) pour que l’affichage du titre soit plus joli. La fonction retourne un couple constitué de la fonction et de la syntaxe “latexienne” de la fonction.

Les autres saisies

def window():
    xmin = float(input('xmin = '))
    xmax = float(input('xmax = '))
    ymin = float(input('ymin = '))
    ymax = float(input('ymax = '))
    return xmin,xmax,ymin,ymax
    
def definite_first_term():
    u = float(input("Entrez le premier terme : "))
    return u

def definite_nb_terms():
    n = int(input('Nombre de termes à construire : '))
    return n

def definite_name():
    name = input("Entrez le nom de l'image à sauvegarder (appuyez sur [Entrée] si vous ne voulez pas sauvegarder l'image) : ")
    return name

Rien de bien compliqué pour ces quelques fonctions qui permettent de saisir le reste des paramètres.

La fonction de construction du graphe

Nous allons la nommer :

def construct_graph(xmin,xmax,ymin,ymax,f,fonction,u,n,name):

et pour commencer, nous allons nommer la figure:

fig = plt.gcf()

dans l’objectif de la sauvegarder (éventuellement) plus tard.

Tracé de la grille

# tracé du repère et de la grille
    ax = axes([xmin,ymin,xmax,ymax])
    ax.set_xlim(xmin,xmax)
    ax.set_ylim(ymin,ymax)
    ax.xaxis.set_major_locator(MultipleLocator(1.0))
    ax.xaxis.set_minor_locator(MultipleLocator(0.1))
    ax.yaxis.set_major_locator(MultipleLocator(1.0))
    ax.yaxis.set_minor_locator(MultipleLocator(0.1))
    ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='--', color='0.75')
    ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='--', color='0.75')

Tracé de la courbe

# tracé des courbes
    x = np.linspace(xmin, xmax, 201)
    y = [f(x) for x in [xmin+i*(xmax-xmin)/200 for i in range(201)]]
    plt.plot(x,y,color='green')
    plt.plot(x,x,color='red')

On trace ici la courbe représentative de la fonction f ainsi que la droite d’équation \(y=x\).

Construction des termes

for i in range(0,n):
        x = [u,u]
        y = [u,f(u)]
        plt.plot(x,y,linestyle='--',color='blue',linewidth=0.5)
        x = [u,f(u)]
        y = [f(u),f(u)]
        plt.plot(x,y,linestyle='--',color='blue',linewidth=0.5)
        if i != n-1:
            x = [f(u),f(u)]
            y = [f(u),0]
            plt.plot(x,y,linestyle='--',color='orange',linewidth=0.5)
        if i%2 == 0:
            yunder=-0.05
        else:
            yunder = -0.1
        plt.text(u-0.02,yunder,np.around(u,2))
        u = f(u)

On fait une boucle dont le nombre d’itérations est égal au nombre de points que l’on veut. Dans un premier temps, on trace en pointillés la ligne verticale qui va de (u,0) à (u,f(u)), dans un deuxième temps, la ligne horizontale qui va de (u,f(u)) à (f(u),f(u)) puis la ligne verticale qui va de (f(u),f(u)) à (f(u),0) pour avoir le terme suivant sur l’axe des abscisses.

Le titre

#params = {'mathtext.default': 'regular' }
#plt.rcParams.update(params) 
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    title = "Construction des "+str(n)+" premiers termes de la suite définie par\n$u_{n+1}=f(u_n)$ avec $f(x)="+fonction+"$"
    plt.title(title)
    if name != '':
        fig.savefig(name+'.png',dpi=100,bbox_inches='tight')
    plt.show()

On insère maintenant le titre; les deux premières lignes commentées affichent un titre avec une police de caractères par défaut sous Python (ce qui ne me convient pas, mais qui peut plaire à certaines personnes). Les deux lignes suivantes spécifient que l’on souhaite un affichage \(\LaTeX\).

Fonction principale

if __name__ == '__main__':
    f,fonction = definite_function()
    u = definite_first_term()
    xmin,xmax,ymin,ymax = window()
    n = definite_nb_terms()
    name = definite_name()
    construct_graph(xmin,xmax,ymin,ymax,f,fonction,u,n,name)

En exécutant ce programme avec les paramètres suivants:

Saisie

on obtient l’image suivante:

Résultat

Retrouvez le programme complet sur cette page.