La formule de Viète sur les polynômes

La formule de Viète sur les polynômes

Cet article est accessible aux élèves de lycée dès la classe de Terminale.

Vous savez ce qu’est un polynôme ? C’est une expression de la forme:$$P(x)=\sum_{k=0}^n a_kx^k=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0.$$

Vous savez ce qu’est une racine d’un polynôme ? C’est une valeur r telle que P(r)=0.

Vous savez ce que sont les nombres complexes ? Ce sont des nombres qui s’écrivent sous la forme a + ib, où i² = -1. Ce sont des nombres imaginaires.

La formule de Viète, du nom du mathématicien français du XVIème siècle François Viète, nous dit que la somme des racines complexes du polynôme P est égale à \(-\frac{a_{n-1}}{a_n}\).

Démonstration

La démonstration de cette formule est assez simple si l’on connaît le théorème de Gauss stipulant que tout polynôme de degré n admet exactement n racines complexes. Ainsi, tout polynôme de degré n peut se factoriser sous la forme : $$P(x)=a_n(x-r_1)(x-r_2)(x-r_3)\cdots(x-r_{n-1})(x-r_n)$$ où \(r_1,\ r_2,\ \ldots,\ r_n\) représentent les n racines complexes du polynôme.

En développant partiellement la forme factorisée, on obtient:$$P(x)=a_nx^n-a_n(r_1+r_2+\cdots+r_n)x^{n-1}+\cdots+(-1)^na_nr_1r_2\cdots r_n.$$Par identification avec la forme développée:$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,$$les coefficients des \(x^{n-1}\) doivent être égaux, et donc:$$a_{n-1}=-a_n(r_1+r_2+\cdots+r_n)$$ce qui donne:$$r_1+r_2+\cdots+r_n=-\frac{a_{n-1}}{a_n}.$$

On peut même affirmer de la même façon que:$$a_0=(-1)^na_nr_1r_2\cdots r_n$$soit:$$r_1r_2\cdots r_n=(-1)^n\frac{a_0}{a_n}.$$

Stéphane Pasquet
Stéphane Pasquet

Laissez votre message