Triangle de Pascal construit avec Python et \(\LaTeX\)

Triangle de Pascal construit avec Python et \(\LaTeX\)

Le code Python

def trianglePascal(n):
    T = [[0] * (n+1) for p in range(n+1)]
    for n in range(n+1):
        if n == 0:
            T[n][0] = 1
        else:
            for k in range(n+1):
                if k == 0:
                    T[n][0] = 1
                else:
                    T[n][k] = T[n-1][k-1] + T[n-1][k]
    return T

T = trianglePascal(9)

Ce premier code est intéressant pour voir comment construire une matrice (dont les coefficients sont ceux du triangle de Pascal).

On commence par initialiser notre matrice T en la remplissant de “0”. Puis on la remplit selon la propriété bien connue : \(\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}\).

Le code \(\LaTeX\)

On va utiliser PythonTeX :

% sous windows 
% pdflatex --shell-escape -synctex=1 -interaction=nonstopmode %.tex|python C:\Users\trash\AppData\Local\Programs\MiKTeX\scripts\pythontex\pythontex.py %.tex|pdflatex --shell-escape -synctex=1 -interaction=nonstopmode %.tex
% Sous Linux, remplacer "--shell-espace" par "-write18"

\documentclass[10pt,a0paper,landscape]{article}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{diagbox}
\usepackage{pythontex}
\usepackage{nopageno}
\usepackage{colortbl}
\usepackage{tikz}
\usepackage[margin=5mm]{geometry}
\setlength{\parindent}{0pt}
\newcommand{\dashed}{\tikz[baseline=1mm]\draw[gray!50,dashed](0,0)--(0,0.5);}
\begin{document}

\begin{pycode}
n = 50

def trianglePascal(n):
    T = [[0] * (n+1) for p in range(n+1)]
    for n in range(n+1):
        if n == 0:
            T[n][0] = 1
        else:
            for k in range(n+1):
                if k == 0:
                    T[n][0] = 1
                else:
                    T[n][k] = T[n-1][k-1] + T[n-1][k]
    return T


T = trianglePascal(n)

print('\\begin{tabular}{|>{\\columncolor{orange!10}}c|*{',n,'}{c!{\\dashed}}c|}\\rowcolor{orange!10}\\hline\\diagbox[height=8mm]{$n$}{$k$}')
for k in range(n+1):
    print('&',k)
    
for j in range(n+1):
	print('\\\\\\hline ',j)
	for k in range(n+1):
		if k == 0:
			print('&1')
		else:
			if T[j][k] != 0:
				print('&',T[j][k])
			else:
				print('&')

print('\\\\\\hline\\end{tabular}')
\end{pycode} 

\end{document}

Une précision ici : j’ai souhaité séparer chaque colonne par des pointillés. Pour cela, j’ai utilisé une macro TiKZ (pour si peu, ça fait un peu mal quand-même…) car le package arydshln (qui permet de le faire simplement) rentre en conflit avec diagbox… Il fallait donc en sacrifier un! (en fait, ils ne rentrent pas vraiment en conflit mais si on utilise des pointillés dans le tableau, une boîte noire apparaît à la place de l’étiquette “n”). On obtient le document suivant :

Pour les curieux, voici un aperçu des premières lignes et colonnes:

Aperçu du document affichant le triangle de Pascal pour n = 50
Stéphane Pasquet
Stéphane Pasquet

Laissez votre message