Archive de l’étiquette suites

La suite de Héron, étude mathématique et implémentation en python

La suite de Héron est une suite permettant de trouver une valeur approchée d’une racine carrée.

Elle tire son nom du mathématicien Héron d’Alexandrie.

Une preuve que 2 = 4

Nous allons voir dans cet article une preuve (bien entendu erronée) que 2 = 4. Ce que nous allons voir est compréhensible par des élèves de Terminale ayant vu la notion de continuité de fonctions.

Etude d’une suite définie par \(u_{n+1} = f(u_n)\)

C’est un classique dans l’étude des suites : on considère une fonction f et on définit une suite par son premier terme \(u_0\) et par la relation \(u_{n+1}=f(u_n)\) pour tout entier naturel n.

Voyons cela avec l’exemple où \(f(x)=\frac{ax+b}{x^2-3x+2}\)…

Construire le graphe d’une suite avec Python

Dans cet article, nous allons nous intéresser à la construction du graphe d’une suite définie par \(u_{n+1}=f(u_n)\).

Mon objectif est de créer un programme Python qui demande à la personne utilisatrice :

  • la fonction;
  • le premier terme de la suite;
  • le nombre de termes à construire;
  • la fenêtre \( (x_{\min}) \), \( (x_{\max}) \), \( (y_{\min}) \) et \( (y_{\max}) \);
  • le nom sous lequel la figure sera sauvegardée (vide si on ne souhaite pas la sauvegarder).